Welcome to the Alexander Yule Consulting Blog

Showing posts with label Parkinson's disease. Show all posts
Showing posts with label Parkinson's disease. Show all posts

Thursday, 29 November 2018

Linking the brain, gut and bacteria in neurological disease.


The lifetime risk of developing neurological disease is influenced by variety of factors: genetics, cardiovascular health, and of course, age and neuroscience research continues to uncover more subtle links. 

Recent work elaborates on a long-suspected connection between that occasionally troublesome leftover, the appendix, and Parkinson’s disease risk, while other researchers have raised the possibility of the brain having its own microbiome, with implications for a bacterial influence on the risk and course of neurological disease.

Alzheimer’s disease (AD) and Parkinson’s disease (PD) are characterised by the accumulation of mis-folded proteins in the brain: amyloid β and tau proteins in the case of AD, and α-synuclein in PD, where it is the main constituent of “Lewy bodies”- clumps of aggregated protein found within neurons and a hallmark of PD and other dementias. Mutations within the α-synuclein gene are found in familial PD and efforts are ongoing to determine the normal function of α-synuclein and whether preventing its aggregation or accumulation in the brain might be of benefit.

PD causes both motor and non-motor symptoms and gut-associated problems such as constipation and impaired emptying of the stomach are common years before the onset of motor symptoms. That the aberrant form of α-synuclein can be found throughout the gastrointestinal tract in individuals with PD has been known for several years, although this also the case in those who don’t develop PD.
   
The highest levels of aberrant α-synuclein are found the appendix, raising the possibility that it serves as reservoir for dysfunctional protein which makes its way to the brain via the vagus nerve and potentiates the transformation of normal α-synuclein into the aggregated form. Circumstantial evidence for a link between the appendix and PD risk has been found in a large epidemiological study, with individuals who had undergone surgical severing of the vagus nerve (usually to manage hard to treat chronic duodenal ulcers) being at  lower risk of developing PD.
  
Defining the role of the appendix in PD has proved elusive, and three recent epidemiological studies failed to find any obvious link. By analysing medical records from over 1.6m Swedes from 1964, a research group at the Van Andel Institute has established that appendectomy reduces the risk of developing PD by around 20%, although this protective effect was only apparent in individuals living in rural areas. Pesticide and herbicide exposure are linked with a higher risk of PD and appendectomy may in some way mitigate environment-related PD risk.  Further analysis indicated that appendectomy delayed the onset of PD by an average of more than three and a half years in those who had undergone appendix removal 30 years or more before.

Biochemical analysis of appendix samples from healthy individuals and those with PD identified aberrant forms of α-synuclein. These were present in 46 of 48 normal individuals.  Mixing normal appendix tissue with normal α-synuclein resulted in the protein being broken down into forms resembling those found in PD brain samples.
 
Although far from being a recommendation for elective appendectomy, the finding that aberrant α-synuclein is common in healthy people suggests that PD risk requires its migration to the brain. Finding ways of confining, or even eliminating, the protein from the appendix could conceivably reduce PD risk.

It’s postulated that appendix might play a role in monitoring and restoring the gut microbiome and that inflammation results in changes which favour bacteria which generate “pro-PD” metabolites. That the gut flora might directly influence the neurological environment is not as far-fetched as it once would have seemed although a poster presentation given at the Society for Neuroscience annual meeting suggests the possibility that a local, rather than distant, microbiome might potentially influence conditions in the brain.

University of Alabama researchers have found that rod-shaped structures first observed on electron microscopic examination of brain samples from schizophrenics are, in fact, bacteria. These were most abundant in the substantia nigra, hippocampus and prefrontal cortex but rarer in the striatum. Bacteria were also found within brain cells, particularly in the ends of astrocytes closest to the blood-brain barrier locations, in dendrites, glial cells and in and around myelinated axons.

To rule out sample contamination, the group compared fresh brain samples from mice raised in a normal environment and those born and maintained in a germ-free environment: bacteria were only found in the former. Nucleic acid sequencing indicated that most of the bacteria belonged to groups commonly found in the gut, although their means of passage to the brain- whether from blood, the nose or through the nervous system.

Since bacteria were found in the brains of both normal individuals and those with schizophrenia, there’s no obvious causal relationship, but, as the study of gut, oral and skin microbiomes has shown, bacterial nutrients and metabolites can cause subtle but important changes in cell and organ function. Whether the presence of bacteria in the brain truly indicates a permanent ecosystem and not merely a post-mortem artefact remains to be established. But, as with the appendix and PD, confirmation that the brain is indeed influenced by local (or distant) bacteria may help better define neurological disease risk and uncover new means of treatment and prevention.

Tuesday, 5 September 2017

Parkinson's disease drug development: moving beyond L-DOPA

False colour MRI scan. 

It's been several years since I was engaged in licensing a treatment for Parkinson's disease (PD), but I recall being struck by the heavy reliance on just a handful of drugs and how empty the PD development pipeline then was. 

In this, the two hundredth year since James Parkinson first described the clinical features of the condition, it's good to see the emergence of potential new treatment options and signs of increasing big pharma involvement in PD drug development.


Like Alzheimer's disease, PD is age-related, with prevalence increasing some 20-fold between ages 60 and 80 in Europe and the US (the rise in PD cases is significantly greater in men than in women, prompting speculation on possible environmental causes of PD). And, again in common with Alzheimer's disease, the future burden of PD care constitutes a demographic time bomb.

The discovery that PD is associated with low levels of dopamine, a key neurotransmitter, resulted in the introduction of l-3,4-dihydroxyphenylanine ("L-DOPA"), a precursor of dopamine, in the 1960s. L-DOPA remains the cornerstone of PD treatment but at a price: long term use results in "off" effects, manifesting as stiff or slow movement and an increased frequency of involuntary movement ("dyskinesia"). Less commonly, L-DOPA can result in episodes of impulsive/compulsive behaviours. Additional medications are often needed to alleviate nausea and other L-DOPA side effects. The other main classes of PD drugs either substitute for dopamine or act by slowing down the biochemical breakdown of dopamine or of L-DOPA. 

PD drug development efforts have produced a variety of useful formulations and add-ons to increase and prolong the usefulness life of L-DOPA treatment but new therapies are needed to address the spectrum of PD non-motor and motor symptoms and to halt,  or at least substantially slow, disease progression. The first treatment to address L-DOPA associated dyskinesia (Gocovri™: Adamas Pharmaceuticals) has received FDA approval, although the FDA were less enthusiastic about accepting a marketing approval submission for Inbrija® (Acorda), an inhaled L-DOPA formulation that may reduce “off" symptoms.

As might be expected in a condition that manifests itself as a variety of not obviously connected symptoms, the pathophysiology of PD involves multiple mechanisms, a better understanding of which could lead to new classes of therapeutics.

The recently announced collaboration between AstraZeneca and Takeda is of note as it signals further big pharma involvement in PD drug development.  Efforts will be focused on a widely touted drug target, alpha-synuclein, a protein found in Lewy bodies- aggregates which accumulate in parts of the brain in PD patients and which may be central in spreading PD related  changes throughout the nervous system. AstraZeneca has also entered into an alliance with Berg Health to apply artificial intelligence to identify novel druggable targets in PD and other neurological diseases.

It's hoped that preventing  alpha-synuclein folding and aggregation might slow or even reverse PD progression. Trials of other anti-alpha-synuclein antibodies (developed by Prothena/Roche and Biogen) are underway, as is a study of a vaccine designed by an Austrian biotech, AffiRis AG, to elicit antibodies against alpha-synuclein. Neuropore, in partnership with UCB is evaluating an orally administered small molecule drug candidate, NPT200-11, which may prevent the accumulation of alpha-synuclein. Another alpha-synuclein modulating small molecule, PBT434 (Prana Biotechnology) has shown promise in animal studies.

The observation made around 40 years ago that certain synthetic opioids resulted in PD like symptoms in drug addicts suggested that mitochondrial defects might  be involved in PD, although no compelling case for a genetic basis for mitochondrial involvement  can be made. Edison Pharma believe that vatiquinone, an antioxidant which is in clinical development for inherited mitrochondrial disease may also have a role in PD treatment, with Phase II study results being announced last year.

Another candidate with a novel mode of action is Foliglurax (Prexton Therapeutics), which acts by modulating the metabotropic glutamate receptor 4 (mGluR4) to restore the imbalance in neurotransmitters believed to cause PD dyskinesia.  A recently published study in which exenatide, an injected synthetic peptide drug used in the treatment of Type 2 diabetes, brought about improvements in PD patients adds weight to the hypothesis that reduced insulin signalling in the brain plays a role in PD and other neurodegenerative conditions.

PD drug development has a historically high failure rate but, between new targets and improved clinical study design, perhaps aided by validated PD biomarkers, it’s reasonable to expect an expansion of PD treatment options over the next ten years, with a realistic prospect of being able to slow disease progression in at least some individuals.

Photo credit: NIH Image Bank


Athauda D et al. Exenatide once weekly versus placebo in Parkinson’s disease: a randomised, double-blind, placebo-controlled trial. Lancet 2017; published online 3rd August 2017. http://dx.doi.org/10.1016/S0140-6736(17)31585-4.