Welcome to the Alexander Yule Consulting Blog

Monday 6 March 2017

Fishy. But in a good way.

Big tilapia. Or perhaps a small tilapia 
held close to the camera.
A recent and widely syndicated media piece (originally featured in STAT) described the experimental use of the skin of tilapia, an edible (if bland) freshwater fish farmed on a large scale, in the treatment of burns victims.

Severe burns destroy the epidermis and prevent it from regenerating, resulting in thick scar tissue that lacks the mechanical and functional features of normal skin. Healing can be encouraged by applying skin grafts to the damaged areas. Smaller burns can be treated using grafts harvested from the patient but this is rarely practical for large burns. Donated human skin and frozen pig skin are valuable substitutes, although both have their drawbacks, as do currently available synthetic and semi-synthetic skin replacement products.

The tilapia skin studies are being conducted in Brazil’s José Frota Institute with the hope that a common and easily processed waste product might help address the very limited availability of donated human and animal skin. There’s not much in the way of scientific rationale in the article, although the clinical investigator, Dr Edmar Maciel, cites the excellent mechanical and moisture-retaining properties of tilapia skin and its collagen content.

Research groups in China and Japan have looked at exploiting tilapia-extracted collagen in wound healing. Tilapia collagen meets the requirements for a useful material in regenerative medicine, being biodegradable, conducive to cell growth, and unlikely to be recognised by the immune system. Tilapia collagen nanofibres have been claimed to promote wound healing in an animal model (although the corresponding publication has since been retracted).

Skin from another table fish is being commercially exploited in wound care products developed and marketed by Kerecis Limited, a company situated in Ísafjörður, Iceland and close to cod-rich fishing grounds. The cod skin is minimally processed (“decellularized”) to provide a biocompatible matrix rich in omega 3 polyunsatured fatty acids and collagen. While fish oil has a long history of use as a health supplement, there’s currently little clinical evidence to indicate that topical application markedly improves wound healing or reduces scarring.

However, the results of studies of cod skin-derived dressings in patients with hard to heal wounds, including diabetic foot ulcers, communicated to date look promising and fish skin matrices may offer a viable alternative to animal-derived and synthetic wound care products. Kerecis has secured regulatory approval for its cod skin dressing and has attracted US Department of Defense funding with which to explore the treatment of burn and blast injury.

Fish skins are not the only marine waste products to have utility in wound healing. Crab and shrimp shells are largely composed of the polysaccharide, chitin. Chitin and its soluble derivative, chitosan , are incorporated into highly absorptive dressings and hydrogels which promote healing. 

Image courtesy of Anusorn P nachol at FreeDigitalPhotos.net

A quick Google can find the tilapia article all over the Internet, but I believe that STAT was the source:

Can tilapia skin be used to bandage burns?. Nadia Sussman, STAT online 2nd March 2107.http://tinyurl.com/zyts59t

Development of biomimetic tilapia collagen nanofibers for skin regeneration through inducing keratinocytes differentiation and collagen synthesis of dermal fibroblasts. Zhou, T et al. ACS Appl. Mater. Interfaces, 2015, 7 (5), pp 3253–3262 (voluntarily retracted August 2015 due to what appear to be procedural shortcomings). http://tinyurl.com/jbtfvkz

Kerecis Limited website. http://www.kerecis.com/technology. There’s some interesting reading on clinical studies and the scientific rationale for cod skin treatment in the "Publications" section. 

No comments:

Post a Comment