Welcome to the Alexander Yule Consulting Blog

Tuesday, 24 March 2020

COVID-19 vaccine clinical development gets off the mark


Vaccine development has never lacked for innovation, although as a necessarily conservative industry, only a small number of evolutionary technologies have so far been exploited in large-scale “routine” childhood and adult vaccines.

This wealth of background ingenuity, along with experience gained in earlier pandemics (SARS, MERS) and the ongoing quest for better influenza vaccines, has allowed COVID-19 vaccine development to get off to a flying start, with an impressive number of candidates incorporating both established and novel technologies now under laboratory evaluation, and with a few in, or very close to, first in human studies.

A high-profile front runner is Moderna’s mRNA-1273, comprising synthetic mRNA encoding COVID-19 S (“spike”) protein, delivered in a lipid formulation which assists in getting the mRNA into cells and to ribosomes, where it’s translated into immunising protein. Dosing is now underway in healthy adults, with safety and immunogenicity read-out anticipated by mid-June next year[1]

However, on the 23rd March, Moderna raised the possibility of being able to make the vaccine available to essential healthcare personnel before year end under an emergency provision.[2] 

Another mRNA player, CureVac, encouraged by early results from an mRNA rabies vaccine study, plans to enter its own COVID-19 mRNA candidate into trials by mid-year.  CureVac hopes that the vaccine might achieve useful responses at the same very low doses used in the rabies study, allowing it to meet early demand from its existing manufacturing capability. Several other mRNA vaccine candidates under development within academia and industry (from BioNTech, Arcturus, Fosun and Pfizer) are at earlier stages of preclinical development and include a nasally administered vaccine encoding highly conserved COVID-19 proteins (eTheRNA consortium) [3].

A Chinese developed non-replicating viral vector vaccine, Ad5-nCoV (CanSino Biological and the Beijing Institute of Biotechnology) will shortly enter the clinic[4]. This exploits an engineered adenovirus (the workhorse of gene therapy) to deliver DNA encoding coronavirus proteins. The technology has a track record, being the same as used in the first Ebola vaccine to receive regulatory approval.

Adenovirus-based vaccines are not without their problems, but as a relatively well-understood platform, it’s no surprise that several companies and institutes are pursuing non-replicating adenovirus candidate vaccines, including J&J, GeoVax, Altimmune, Greffex and Vaccitech. An arguably riskier route is the use of replicating viral vectors such as measles (Institute Pasteur) and horsepox viruses (Tonix Pharma).

DNA delivery does not require a living carrier, replicating or otherwise. Inovio is applying its electroporation to push COVID-19 protein encoding DNA through the skin. Zydus Cadilla is also looking at a DNA, although has not disclosed how the encoding plasmid might be delivered.

Protein subunit vaccines are well-understood, with several candidates developed in response to the SARS pandemic. Importantly, the manufacture of protein subunit vaccines is well-established and can be accomplished to high yields in in standard bacteria and yeast expression systems, although several COVID-19 candidates involve insect cell (Sanofi, ExpreS2ion) or plant-based manufacture (IBio/CC Farming).

And, in the midst of all this experimental vaccine tech, let’s not ignore the old school approaches of formalin-inactivated virus (Sinovac) and attenuated live vaccines (Codagenix/Serum Institute of India) which have proved their worth in existing viral vaccines.

Nor should we ignore the slog ahead. The correlates of protection for COVID-19, that is what should we be looking for with respect to the quality and magnitude of a neutralising antibody response, are unknown: analysis of the immune response from recovering (and infected but asymptomatic) individuals may shed much needed light.  The phenomenon of “antibody dependent enhancement” (ADE), where the virus hijacks the host antibody response to infect certain cell types has been observed in both  non-SARS human and animal coronavirus infection. Early SARS vaccine development pointed up a potential risk of severe hypersensitivity reactions in immunised animals when challenged with virus.  

Despite the pressing need to at least be able to protect those on the front line, history dictates caution[5]. A possible silver lining of the pandemic is that revolutionary approaches such as mRNA vaccination may prove their worth much earlier than would normally be the case.  Vaccine development failures, and there will be many, will, at hte very least, will add to preparedness for the next pandemic by eliminating blind alleys. 

With a fair wind, we might see limited release of a vaccine within 18 months. Until then, and with the gradual development of what will hopefully be protective natural immunity, we all need to accept that lockdown and social distancing save lives and takes some of the pressure off our healthcare systems.





[1] Safety and Immunogenicity Study of 2019-nCoV Vaccine (mRNA-1273) to Prevent SARS-CoV-2 Infection https://tinyurl.com/vnvl7wd
[2] Moderna: Virus Vaccine May Be Available to Aid Workers by Fall, Wider Provision in 12-18 Months https://tinyurl.com/s3tm6as
[3]eTheRNA Launches an International Consortium and Starts Development of Cross-strain Protective CoV-2 mRNA Vaccine for High Risk Populations https://tinyurl.com/wdmkk6d
[4] A phase I clinical trial for recombinant novel coronavirus (2019-COV) vaccine (adenoviral vector) https://tinyurl.com/vqemt6u
[5] h Don’t rush to deploy COVID-19 vaccines and drugs without sufficient safety guarantees https://tinyurl.com/swybbya

Sunday, 22 March 2020

Early COVID-19 drug studies: what have we learned?


The past week has seen first results from studies of existing antiviral drugs and repurposed agents in those hospitalised with COVID-19, raising at least as many questions as answers. A combination of two antivirals (lopinavir–ritonavir: Kaletra®) used to treat HIV infection did not reduce mortality in a randomised study conducted in almost 200 severely-ill Chinese patients[1], although with a hint that earlier treatment might just be of some benefit[2].

Avigan® (avilavir/ favipiravir), an influenza drug approved in Japan and China has been reported as clearing the COVID-19 virus in four days, versus those treated with another antiviral agents. However, this was not a randomised study and involved less severely ill subjects, with benefit confined to those receiving early treatment. Although while broadly hailed as “highly effective in media reports, Avigan’s developer (Fujifilm) has been cautious in making claims around efficacy. Avigan® has been associated with severe adverse events, limiting its use as an influenza treatment.

An investigational antiviral with a similar mechanism of action, remdesivir (GS-5734; Gilead Sciences, Inc), and which is known to be active against the SARS and MERS coronaviruses is in late-stage testing in China, the US and South Korea. Anecdotal findings from a small number of severely ill patients infected while aboard a cruise ship have suggested remdesivir may have reduced reliance on ventilator support. Despite an absence of hard evidence, the drug was approved for compassionate use in the US on March 19th. As of today (Sunday 22nd March), Gilead was forced to temporarily limit patient access to remdesivir due to “overwhelming demand”[3].

Similarly, chloroquine, a decades old antimalarial drug, has also been approved for compassionate use on the back of anecdotal evidence, with the hope that it may also have a prophylactic effect. A related drug, hydroxychloroquine, in combination with the antibiotic azithromycin, has been reported as reducing viral burden in a small study[4]. Both drugs have been reported to be in short supply through high demand in the US, leading to problems for autoimmune disease patients dependent on the same drugs.

Actemra®, a biologic developed for rheumatoid arthritis targets the cytokine IL-6, an immune system component responsible for the “cytokine storm” observed in CAR-T therapy and apparently a contributor to the pathology of severe COVID-10 infection has been observed to be of benefit in a small and uncontrolled study in China. A similar anti-IL-6 biologic, Kevzara® (Regeneron) is moving towards Phase III studies in COVID-19 infection.

No big wins, but, and perhaps the most you can hope for from early, essentially empirical interventions and anecdote are hints and glimmers of possible ways forward. More such early and empirical, will light the way, with China, not surprisingly, ahead of the curve with over thirty medicines (including traditional Chinese medicines) identified as having an anti-COVID-19 effect in the laboratory.

[In case you missed it in my Favourites sidebar, check out Derek Lowe's blog: 
https://blogs.sciencemag.org/pipeline/archives/2020/03/24/the-latest-coronavirus-clinical-trials#comment-314221]





[1] A Trial of Lopinavir–Ritonavir in Adults Hospitalized with Severe Covid-19. Cao B et al. NEJM
Online March 18th 2020 March 18, 2020 DOI: 10.1056/NEJMoa2001282 https://tinyurl.com/ulpek4c
[2] Covid-19 — The Search for Effective Therapy. Baden LR et al. NEJM online March 18th 2020 DOI: 10.1056/NEJMe2005477 https://tinyurl.com/yx6jrrxe
[3] Gilead pauses access to experimental Covid-19 drug due to ‘overwhelming demand’. Herper M. STAT online March 22nd 2020 https://tinyurl.com/tum92s6
[4] Information for Clinicians on Therapeutic Options for COVID-19 Patients. CDC website accessed 22nd March 2020. https://tinyurl.com/rx7ujpz

Life During Wartime


As you may have noticed, there’s a lot happening on this small planet of ours. One small personal bright spot is that, having spent years involved in infectious disease, from diagnostic test design through vaccine and drug development, I’ve been able to help family, friends and colleagues make sense of the pandemic and have been fortunate to engage with those whose knowledge and experience goes well beyond mine.

Let’s start with the good news. While in no way underplaying the threat posed by COVID-19, the biopharma industry has been quick off the mark, with both well-trodden and new paths to treatment and prevention under very active exploration. Experience gained from past SARS and MERS epidemics (and seasonal influenza) mean that industry and public health and regulatory agencies are not starting from scratch.

That’s not to imply that treatments and vaccines will be here a week come Tuesday. Problems encountered in early SARS vaccine studies are a reminder of just how steep the learning curve might prove to be, and, at the time of writing, early clinical data for studies of repurposed drugs in ameliorating the effect of COVID-19 infection is equivocal at best. But, every hint of potential benefit will assist in identify strategies with a higher probability of success.

My white coat-days are long gone, and my battle against COVID-19 is essentially confined to taking the obvious practical measures to keep family, friends and myself at low-risk for infection. Lord, how I miss the pub already….

The only small additional effort I can make is in using this (very) modestly visited blog to pull together what’s relevant and important in controlling COVID-19, with the hope that it just might assist in developing a sense of perspective for anyone interested in the how and why of the science and industry effort.

So, until the world has adjusted to the new normal, this blog will be mainly dedicated to selected COVID-19 news, with at least a once a day update. Comments and questions, all and any feedback more welcome than ever.

Monday, 14 October 2019

Vaping and lung injury: No smoke without fire


E-cigarette use (generically “vaping”) is nothing if not controversial with respect to public health benefit.
Widely cited pluses are that vaping results in far lower exposure to the smoke, tar and carbon monoxide that make traditional coffin nails so dangerous, with the level of potential harm from vaping being close to that of nicotine replacement products of the patch, gum or spray variety. 
A 2018 report from Public Health England estimated that e-cigarettes were “95% less harmful” than regular cigarettes and were an aid to smoking cessation[1].
The European Public Health Association is not convinced when it comes to quantifying the relative safety of e-cigarettes (“statements that they are some percentage safer than conventional cigarettes are entirely unjustified”) and is more cautious over benefit in smoking cessation.[2] Expert authorities,  including the British Heart Foundation, recommend that non-smokers should not take up vaping[3].
Vaping has never been considered risk-free. Vaping products contain a variety of additives and solvents, including propylene glycol and glycerol: when heated, these give rise to known carcinogens and toxicants readily detectable in the urine of e-cigarette users[4]. And while vaping products may contain flavourings with a long history of safe use in the food industry, little is known about their toxic potential when heated and delivered to the lungs.
Uptake of vaping by otherwise non-smoking teenagers is of broad concern.  Teenage vapers might never adopt the less attractive smoking habits of their parents and older siblings, but there is apprehension that, despite an overall decline in tobacco use, a new generation of nicotine addicts is in the making.
The estimated 78% increase in e-cigarette use by American high school students in 2018 may prove to be a short-lived phenomenon driven by slick vaping technology and stealthy promotion, but it has prompted responses at state and federal level. A previous FDA Commissioner, Scott Gottlieb, described e-cigarette use as “an epidemic among teenagers[5], necessitating restrictions on the marketing of flavoured vaping products and tougher retail regulation[6].
The regulatory hammer now looks set to fall harder and faster with growing evidence for an association between potentially fatal lung injury and vaping, first reported in the US in August this year, and now designated as “e-cigarette, or vaping, product use associated lung injury (EVALI)” by the US Centers for Disease Control and Prevention in a newly-released interim guidance document[7]. At publication, 1,229 EVALI cases had been reported in the US or US territories, with 26 fatalities.[As of 22nd October, there were 1,604 reported EVALI cases and 34 deaths. Updates are available from the CDC website: http://tinyurl.com/y29saqdd]
Affected vapers, and their preferred products and vaping habits, are unlikely to be conveniently similar enough to easily pin down common causes of EVALI. Available data hints at a contribution from the tetrahedral cannabidiol (THC), with 76% of EVALI patients having used THC-containing products in the 90 days prior to onset of EVALI symptoms, and 32% using THC-containing products exclusively.  However, 58% reported use of nicotine-containing products, with 13% using nicotine-containing products exclusively, meaning that nicotine (or one of the many additives in vaping products) cannot be ruled out as either cause or contributor.[On November 5th, CDC announced that vitamin E acetate, often used to cut THC oil and as a thickening agent in vaping liquid, was detectable in lung fluid samples from EVALI patients. Although considered safe as a dietary supplement, vitamin E acetate is known to impair lung function  http://tinyurl.com/y29saqdd]
Analysis of lung biopsies by Mayo Clinic investigators found signs of acute lung injury in vapers consistent with chemical or toxic by-product damage, rather than suggestive of a rare form of pneumonia associated with the inhalation of oily substances (“exogenous lipoid pneumonia”)[8].
Several US states have been quick to respond to the heightened perception of serious risk from vaping, with Michigan, New York, California, Massachusetts and Rhode Island introducing outright bans or other controls on flavoured tobacco products last month[9]. India also announced an intention to ban vaping products, prompting the perhaps unfair observation that, in a country where the government is a major stakeholder in tobacco firms (and with some of the highest rates of smokeless tobacco use and oral cancer incidence in the world), public health might not be the only concern[10].
EVALI will undoubtedly precipitate widescale re-evaluation of vaping benefit versus harm, but this may only be the start of the vaping industry’s woes. A recent animal study suggests that chronic exposure to nicotine-containing e-cigarette smoke can give rise to potentially carcinogenic nitrosoamines, perhaps through chemical reaction with nitrosonium ions naturally present in mammalian cells, and result in higher rates of lung and bladder cancer than in unexposed animals.[11]
The relevance to real-life vaping product use and cancer risk awaits larger and more sophisticated investigation but the possibility exists that the carcinogenic potential of nicotine delivered via vaping is currently underestimated.
Photo credit: Lindsay Fox (Creative Commons Licence)



[1] Evidence review of e-cigarettes and heated tobacco products. McNeill A et al. February 2018. http://tinyurl.com/ycake739
[2] Facts and fiction on e-cigs. European Public Health Association. August 2018. http://tinyurl.com/y4358wuj 
[3] Is vaping safe? Trevallion L. Heart Matters (British Heart Foundation blog) http://tinyurl.com/y3shysk4
[4] Adolescent exposure to toxic volatile organic chemicals from e-cigarettes. Pediatrics 2018: 141(4). Published online April 02, 2018 doi: 10.1542/peds.2017-3557
[5] Statement from FDA Commissioner Scott Gottlieb, M.D. on new steps to address epidemic of youth e-cigarette use . Press release online September 12th 2018. http://tinyurl.com/y32z4yb2
[6] FDA considers regulatory action as vaping among US teens jumps 78% in a year. Dyer O. BMJ 2019;364:741 https://doi.org/10.1136/bmj.l741   Online February 14th  2019.
[7] Update: Interim guidance for health care providers evaluating and caring for patients with suspected e-cigarette, or vaping, product use associated lung injury — United States, October 2019. Siegel DA et al. MMWR online October 11th, 2019. http://dx.doi.org/10.15585/mmwr.mm6841e3external icon 

[8] Pathology of vaping-associated lung injury. Butt YM et al. Correspondence, NEJM online 2nd October 2019
https://www.nejm.org/doi/10.1056/NEJMc1913069 

[9] As the number of vaping-related deaths climbs, these states have implemented e-cigarette bans. Ducharme J Time Magazine online September 25th 2019.  http://tinyurl.com/y573z8l7 

[10] India banned e-cigarettes — But beedis and chewing tobacco remain widespread. Frayer L and Pathak S. Goats and Soda. National Public Radio online 9th October 2019 http://tinyurl.com/y5ltu3lo

[11] Electronic-cigarette smoke induces lung adenocarcinoma and bladder urothelial hyperplasia in mice. Tang M-S et al. PNAS online October 7th 2019 https://doi.org/10.1073/pnas.1911321116


Saturday, 29 June 2019

Improving autoimmune disease treatment: tolerance required


Hand of a rheumatoid arthritis patient
The author and dramatist Friedrich Dürrenmatt wrote that “Without tolerance, our world turns into hell”.  Nothing could be truer for sufferers of autoimmune conditions such as rheumatoid arthritis, multiple sclerosis, psoriasis, Crohn’s  disease (an inflammatory bowel condition) and Type 1 diabetes, where faults in one or more of the mechanisms that normally prevent the immune system from attacking the body (“immune tolerance”) result in chronic tissue and damage.

A strength and weakness of the immune system is that, for speed and breadth of recognition of foreign antigens, the white blood cells responsible for antibody production (B cells) and those active in cell-mediated responses (T cells) express a broad repertoire of randomly-generated surface receptors. Probability dictates that a number of T and B cell clones will possess receptors that recognize “self” molecules (“autoantigens”).

Policing of the immune system to weed out or otherwise inactivate self-reactive T and B cell occurs in the thymus gland and bone marrow, respectively, and in peripheral sites including the lymph nodes. Not all bad actors are recognised and dealt with:  escapee self-recognising T cells are held in check by another subset of T cells (regulatory T cells- “Treg”). Through quirks in genetics and a contribution from environmental factors, one more of the mechanisms involved in self-tolerance fail in some individuals, leading to autoimmune disease.

Current therapies for autoimmune conditions are aimed at reducing inflammation using steroids or inducing remission through “disease modifying” drugs (DMARDs), either biologics which neutralise the signalling molecules (“cytokines”) involved in the inflammatory cascade or with small molecules such as methotrexate  and, more recently, Janus kinase inhibitors. All result in some degree of immune suppression and may not result in satisfactory disease control: up to a quarter of those receiving DMARDs for rheumatoid arthritis fail to obtain sustained benefit.

The therapeutic potential of restoring self-tolerance has been actively pursued for close to two decades. Purging the immune system of mature T and B cells through aggressive chemotherapy, followed by its restoration through stem cell transplantation has had some success in multiple sclerosis and Crohn’s disease patients, but comes with high risk of mortality.

More viable approaches applicable across a range of autoimmune conditions involve the targeting of autoantigen-recognising T cells or the generation of Treg cells to restore self-tolerance.Paradoxically, tolerance can be restored by presentation of the offending autoantigen(s) in the form of a “tolerizing vaccine” containing whole proteins or peptides, or DNA or mRNA encoding the autoantigen of choice.  

Tolerization through presentation of insulin or other autoantigens recognised in Type 1 diabetes (caused by the autoimmune destruction of insulin-producing beta cell in the pancreas) has the potential to preserve insulin levels but clinical studies have been largely disappointing, as has been the case in multiple sclerosis and rheumatoid arthritis studies.

Cellular immunotherapies that more effectively present autoantigens or increase numbers of Treg cells have great promise in severe or refractory autoimmune diseases. Dendritic cells (DCs) are specialised at presenting antigens to the immune system, a property exploited in cancer vaccine development, [Dendritic cell vaccines: back to the future] but are also effective at inducing Treg cells. Some degree of clinical benefit has been observed in studies involving local administration of autoantigen-loaded and non-antigen specific “tolerogenic” DCs  (tolDC) into the knee joints of subjects with rheumatoid arthritis. Other studies with tolDC therapy are ongoing in subjects with Type 1 diabetes and Crohn’s disease and in preventing rejection in solid organ transplantation.

Other cellular immunotherapy strategies in active development involve the isolation, expansion and (re)infusion of Treg cells or mesenchymal stem cells which have multiple effects on the immune system, including Treg induction. In another twist, Treg cells may be genetically engineered to express autoantigen-recognising receptors and early-stage development of this approach is underway in the prevention of transplant rejection. An advantage of mesenchymal stem cell immunotherapy is that cells can be readily obtained and expanded from donated cord blood or fatty tissue (“allogenic” therapy).

While relatively complex and expensive, and currently at a very early stage of development, cellular immunotherapies may eventually become established as a means of managing severe or refractory autoimmune conditions without requiring constant medication or continual switching of drug regimens.  The quality of life and economic implications for effective treatment are significant: in the developed economies, around 1% of adults develop rheumatoid arthritis, with the majority being first diagnosed while still of working age. Multiple sclerosis and Crohn’s disease patients are generally diagnosed while still in their early 30s.

Photo credit: Bernd Brägelmann Braegel Mit freundlicher Genehmigung von Dr. Martin Steinhoff

 

 

 

Saturday, 13 April 2019

Looking good: industry sets its sights on retinal disease treatments

End stage retinitis pigmentosa

Some while back, I posted on the challenge, and lack of progress, in the development of drug treatments for the most common cause of adult blindness- “dry” age-related macular degeneration - dAMD (Roche’s lampalizumab disappoints- is the "dry" AMD pipeline about to dry up?). 

But, as a recent article in Nature Outlook reminded me, while pharmaceutical development may be lagging, a host of technologies now in clinical and commercial development offer hope for individuals with previously untreatable forms of inherited and non-inherited retinal degeneration. Author Simon Meakin lists four technologies with the potential to revolutionise treatment: retinal prosthetics (“bionic eyes”); gene therapy; optogenetics, and cell regeneration.

The “bionic eye” approach involves fooling the brain into interpreting electrical signals delivered by an implanted microchip placed over the retina as spots of light. A microprocessor converts images captured by a miniature camera worn on a spectacles frame to electrical impulses relayed by wireless to the implant. While this cannot match the resolution achieved by the millions of photoreceptors in a healthy retina, with training, recipients can distinguish light from dark and identify high contrast objects. 

The first commercial product (Argus II: Second Sight) received regulatory approval in 2011 in Europe (2013 in the US) for use in individuals with end-stage retinitis pigmentosa (RP).The device cost is widely cited as around $150,000, excluding surgical and training costs. Two other prosthetic systems in clinical development use implants placed underneath the retina; Prima (Pixium Vision) and Alpha AMS, a camera-free system developed by Retinal Implants AG, although the latter has recently entered administration. Pixium intends to begin trials of Prima in dAMD patients before the end of 2019. Second Sight is evaluating the feasibility of bypassing the retina by implanting electrodes into the visual cortex with its Orion system. 

Gene therapy is now established as a viable means of bringing some degree of vision improvement to those with certain inherited conditions, with the landmark approval of Luxturna® (Spark Therapeutics) in both the US (December 2017) and Europe (November 2018). Clinical trials of other gene therapies are underway, with the aim of correcting RP-associated defects and inherited retinal conditions including Leber’s hereditary optic neuropathy; Leber’s congenital amaurosis; Stargardt disease; achromatopsia, and X-linked retinoschisis.

While not associated with any single gene detect, the “wet” (neovascular) form of AMD is also the subject of gene therapy trials aimed at neutralizing a protein (vascular endothelial growth factor- VEGF) involved in blood vessel formation. Success could replace the current treatment of regular injection of anti-VEGF antibodies into the eye.

Treatments in development require injection of viral vectors to insert functioning genes but other strategies, including gene editing and gene silencing, could potentially expand the range of treatable conditions. At a cost of around $425,000 per eye, Luxturna® has featured in the “fair value” debate around drug pricing, although the recent acquisition of NightstaRx, a gene therapy developer with a portfolio of early and clinical-stage assets by Biogen for a headline value of around $800 million, and the acquisition of Quethera and its pre-clinical glaucoma programme by Astellas are likely only the beginning of big pharma interest in next generation ophthalmology.
   
Optogenetic approaches, which exploit light sensitive proteins (“opsins”) to modulate biological processes, are still in early clinical development but have the potential to address a number of ophthalmologic conditions in which there are too few cells left to exploit or repair through either restoring function or inducing other types of retinal cell to become light-sensitive. A start-up company, RetroSense, initiated the first clinical studies of a viral vector delivered opsin in RP patients and was acquired by Allergan in 2016: an early-stage clinical study is ongoing.

The downside of opsins is that they respond to a limited range of light conditions. Gensight Biologics, hopes to get around this by combining video capture and electrical stimulation of retinal ganglion cells made light-sensitive through insertion of a gene coding for opsin production. The first RP patient was treated in October 2018 and the ongoing clinical study will evaluate different doses of the viral vector bearing the opsin gene.

The replacement of damaged retinal pigment epithelium (RPE) through stem cell therapy may eventually become a viable treatment for RP and AMD. Mixed results have been obtained with injected cell suspensions but implantation of pre-formed sheets of RPE cells secured within a biocompatible matrix could prove to be a significant improvement. Early clinical studies have been completed in subjects with both the wet and dry forms of AMD, and a start-up, Regenerative Patch Technology, formed to take up the challenge of financing and commercialising development.

Repairing the circuitry linking photoreceptors to the brain presents an altogether different level of technical challenge but, on the basis that non-mammalian species are capable of some degree of retinal neuron regeneration, it’s not impossible that means of reproducing this trick in humans might be developed, possibly through re-programming other cells present in the eye to regenerate lost neurons.

Complexity, cost and necessary caution over gene therapy and stem cell procedures make it likely that only a small number of individuals will initially benefit from these treatments, but advances in viral vector and stem cell-derived product manufacture, together with growing industry involvement should eventually make these life-changing treatments available to a significant minority of vision-impaired individuals.

Photo credit: Christian Hamel [CC BY 2.0]

Saturday, 6 April 2019

HPV vaccination just keeps on giving

HPV vaccination has the potential to eliminate
 cervical cancer in future generations

As a keen follower of developments in cancer immunotherapy (and occasional commentator), it’s easy to forget the quiet impact of past advances in cancer treatment and prevention which are now a routine element of healthcare.

A publication from the Giovanni Lorenzini Foundation, a not for profit health educator,”HPV Vaccination Concepts in the Reality of Today, reminded me that, while effective therapeutic cancer vaccines remain elusive, prophylactic vaccination against human papilloma viruses (HPV) has achieved the initial public health goal of significantly reducing the risk of cervical cancer and, in time, will have a similar impact on other HPV infection related cancers, notably cancers of the head and neck.

HPV infection is not uncommon, with viral DNA being detectable in around 10% individuals (and up to 30% in some populations). Over 200 types of HPV have been identified, with 15 or so being linked to cancer. These “high risk” types have a propensity to integrate their DNA with that of host cells, resulting in the expression of two particular proteins (E6 and E7) with cancer-causing potential. HPV-related cancers are a significant burden, accounting for an estimated 4.5% of all cancers, most commonly cervical cancer, followed by head and neck cancers, anal and male and female genital cancers.

Cervical cancer development is generally slow: the first HPV vaccines were deployed just over a decade ago so the absolute reduction in cancer cases is unknown. Meta-analysis of studies in women receiving either an HPV vaccine or a placebo found that pre-cancerous changes in the cervix were present in 2 of every 10,000 vaccinated women and in 164 of every 10,000 unvaccinated women. In women aged 15 to 26 years (but not those aged 25 to 45 years) vaccination reduced the risk of cervical pre-cancerous changes associated with the highest risk HPV types from 341 to 157 per 10,000. 

Early HPV vaccines were only capable of protecting against two or four high risk HPV types associated with cervical cancer, with vaccines introduced in the last four years addressing nine HPV types to provide broader protection against a range of HPV-related cancers, particularly head and neck cancers arising from or orpharyngeal infection with HPV. 

While the overall incidence of head and neck cancers is declining in developed economies, largely due to decreasing tobacco use, the incidence of HPV-positive cancers has risen over the last two decades. Extending routine HPV vaccination to young males (a policy in place in the UK since July 2018) should eventually reverse this trend, while also further reducing the prevalence of HPV-associated genital cancers.

HPV vaccination has not been without controversy. A meta-analysis of 73,000 participants in HPV vaccine studies did not encounter any evidence to support much publicized claims that “debilitating illness” (including rapid increase in heart rate on sitting or standing up- postural orthostatic tachycardia syndrome) was a common side effect in girls. The uptake of HPV vaccination in the US is low relative to overall vaccination rates. Parental concern that vaccination would somehow encourage promiscuity has been proposed as one reason, although studies suggest that lack of knowledge about the purpose and benefits of HPV vaccination; a three dose vaccine schedule which may have resulted in missing doses, and vaccine cost are key contributors.

HPV vaccination may have benefits outside of cancer prevention. The prevalence of HPV in seminal fluid is twice as high in infertile men when compared with the general population. Laboratory studies have identified several mechanisms by which HPV can detrimentally alter sperm, with the presence of sperm-bound viral DNA being a predictive factor for early miscarriage. Vaccination has been shown to increase the rate of HPV clearance from infected semen and might contribute to higher success rates for couples undergoing assisted reproduction.

Photo credit: chinnapong/shutterstock.com